PAPER

Investigation of a minority carrier trap in a NiO/ β -Ga₂O₃p–n heterojunction via deep-level transient spectroscopy

To cite this article: Haolan Qu et al 2023 Semicond. Sci. Technol. 38 105010

View the article online for updates and enhancements.

You may also like

- <u>A state-of-art review on gallium oxide fieldeffect transistors</u> Rundi Qiao, Hongpeng Zhang, Shuting Zhao et al.
- Experimental investigation on the instability for NiO/-Ga₂O₃ heterojunctiongate FETs under negative bias stress Zhuolin Jiang, Xiangnan Li, Xuanze Zhou et al.
- <u>-Ga₂O₃ for wide-bandgap electronics and</u> optoelectronics Zbigniew Galazka

Semicond. Sci. Technol. 38 (2023) 105010 (7pp)

https://doi.org/10.1088/1361-6641/acf608

Investigation of a minority carrier trap in a NiO/ β -Ga₂O₃ *p*–*n* heterojunction via deep-level transient spectroscopy

Haolan Qu^{1,2,3}, Jiaxiang Chen^{1,2,3}, Yu Zhang^{1,2,3}, Jin Sui^{1,2,3}, Ruohan Zhang^{1,4}, Junmin Zhou^{1,2,3}, Xing Lu⁵ and Xinbo Zou^{1,4,*}

¹ School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
 ² Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences,

Shanghai 200050, People's Republic of China

³ School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China

⁴ Shanghai Engineering Research Center of Energy Efficient and Custom AI IC, Shanghai 200031, People's Republic of China

⁵ School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China

E-mail: zouxb@shanghaitech.edu.cn

Received 24 April 2023, revised 26 July 2023 Accepted for publication 1 September 2023 Published 11 September 2023

Abstract

The properties of a minority carrier (hole) trap in β -Ga₂O₃ have been explicitly investigated using a NiO/ β -Ga₂O₃ *p*–*n* heterojunction. Via deep-level transient spectroscopy, the activation energy for emission (E_{emi}) and the hole capture cross section (σ_p) were derived to be 0.10 eV and 2.48 × 10⁻¹⁵ cm², respectively. Temperature-enhanced capture and emission kinetics were revealed by the decrease in the capture time constant (τ_c) and emission time constant (τ_e). Moreover, it was determined that the emission process of the minority carrier trap is independent of the electric field. Taking carrier recombination into account, a corrected trap concentration (N_{Ta}) of 2.73 × 10¹⁵ cm⁻³ was extracted, together with an electron capture cross section (σ_n) of 1.42 × 10⁻¹⁸ cm². This study provides a foundation for the comprehension of trap properties in β -Ga₂O₃, which is crucial for overcoming self-trapped hole effects when obtaining *p*-type β -Ga₂O₃ materials and performance enhancement of β -Ga₂O₃-based power devices.

Keywords: NiO/ β -Ga₂O₃p-n heterojunction, deep-level transient spectroscopy, minority carrier trap, time constant, trap concentration

(Some figures may appear in colour only in the online journal)

1. Introduction

Today, β -Ga₂O₃ has tremendous potential in power supply, radar and communication systems due to its outstanding material properties, including its wide bandgap (4.9 eV), high breakdown electric field (8 MV cm⁻¹) and availability

of single-crystal native substrates [1, 2]. In the past, in addition to unipolar devices [3–5], enormous efforts have been made in the development of β -Ga₂O₃-based bipolar devices [6–9]. However, *p*-type β -Ga₂O₃ represents a challenge due to its large hole effective mass and self-trapping of holes in β -Ga₂O₃ [2, 10]. Instead, β -Ga₂O₃-based *p*–*n* heterojunctions have typically been manufactured with other *p*-type materials, such as Si [11], GaN [12, 13], NiO [6, 8, 14], 4H-SiC [7], diamond [15], CuMo₂ [16] and ZnCo₂O₄ [8]. For instance,

^{*} Author to whom any correspondence should be addressed.

the NiO/ β -Ga₂O₃ p-n heterojunction has successfully demonstrated a low specific on resistance of 2.7 m Ω cm² and a high breakdown voltage of 1404 V [6].

It is also reported that the performance of the β -Ga₂O₃ p–n heterojunction is significantly affected by deep-level traps inside the devices [17–19]. By reducing the deep-level trap concentration, improved performance was obtained in the NiO/ β -Ga₂O₃ p–n heterojunction, including a reduced ideality factor and an enlarged reverse blocking voltage [17]. Furthermore, a previous study suggested that the forward conduction characteristics of the NiO/ β -Ga₂O₃ p–n heterojunction were primarily governed by Shockley–Read–Hall recombination induced by interfacial states or mid-gap traps [18].

There have been some investigations on the majority carrier (electron) traps in the β -Ga₂O₃ p-n heterojunction [8, 13, 15, 17–20]. In a NiO/ β -Ga₂O₃ p-n heterojunction, two majority carrier traps were identified and believed to be responsible for the forward subthreshold conduction (E_C – 0.67 eV) and reverse leakage current at a high electric field (E_C – 0.75 eV), respectively [19].

Compared to majority carrier traps, there are few studies on minority carrier (hole) traps in *n*-type β -Ga₂O₃. A minority carrier trap with an activation energy for emission (E_{emi}) of 0.14 eV was found in a NiO/ β -Ga₂O₃ *p*–*n* heterojunction [18, 19] and a diamond/ β -Ga₂O₃ *p*–*n* heterojunction [15]. However, some issues still need to be addressed before one can achieve complete comprehension of minority carrier traps in β -Ga₂O₃ *p*–*n* heterojunctions.

- (a) Few studies focus on the capture process characteristics of minority carrier traps in β-Ga₂O₃, such as the temperaturedependent capture time constant (τ_c) and the capture barrier energy (E_{cap}). The lack of the above information may hinder crucial optimization of β-Ga₂O₃-based bipolar devices. For example, the capture process of minority carrier traps in a high-gain β-Ga₂O₃ ultraviolet detector is highly related to the gain and spectral responsivities of the photodetector [21].
- (b) Information on the emission process of minority carrier traps is critical in understanding the correlation between minority carrier traps and device properties, such as compensation of conductivity and recombination of nonequilibrium charge carriers [22]. The electric-field-dependent emission process has previously been qualitatively investigated [18]; however, a quantitative assessment of the emission time constant (τ_e) of minority carrier traps in β-Ga₂O₃ p-n heterojunctions is still missing.
- (c) The minority carrier trap concentration has previously been extracted using deep-level transient spectroscopy (DLTS) [18, 19]. Nevertheless, failure to take the quick carrier recombination effect into account would lead to an underestimated trap concentration rather than the actual value. It is highly demanding to accurately extract the trap concentration (N_T), which is key to identifying the origins of traps and providing feedback for the optimization of materials and devices [23].

In this paper, the electrical and trap characteristics of a NiO/ β -Ga₂O₃ *p*-*n* heterojunction were thoroughly studied. A minority carrier (hole) trap $(E_V + 0.10 \text{ eV})$ is extracted via DLTS in a NiO/ β -Ga₂O₃ *p*-*n* heterojunction. The temperature-dependent τ_c is determined by varying the filling pulse width (t_P) , from which the E_{cap} is measured. The negligible shift of τ_e with an altering reverse bias (U_R) indicates an electric-field-independent emission process. Meanwhile, temperature-enhanced emission behavior is revealed by the temperature-dependent τ_e . By varying the U_R , a corrected trap concentration (N_{Ta}) is obtained together with the electron capture cross section (σ_n) . The investigation on the minority carrier trap paves a solid path for a comprehensive understanding of the trap properties in β -Ga₂O₃ *p*-*n* heterojunctions, which could further facilitate acquisition of *p*-type β -Ga₂O₃ and performance enhancement of β -Ga₂O₃-based devices.

2. Device and electrical characteristics

Figure 1(a) shows a schematic cross section of the NiO/ β - Ga_2O_3 p-n heterojunction. The wafer contained a 10 μ m thick Si-doped n^- -type β -Ga₂O₃ drift layer and a 635 μ m thick Sn-doped (001) n^+ -type β -Ga₂O₃ substrate, and their electron concentrations were about 4 \times 10¹⁶ cm⁻³ and 9.7×10^{18} cm⁻³, respectively. A Ti/Au (20 nm/80 nm) cathode was formed by electron beam evaporation and rapid thermal annealing for 60 s at 470 °C. Subsequently, the 360 nm thick SiO_2 and 40 nm thick SiN_x were grown by plasmaenhanced chemical vapor deposition. To pattern the *p*-type NiO region, inductively coupled plasma etching was applied for 160 s, followed by buffered oxide etchant treatment for 30 s to remove residual SiO_2 . Then, 300 nm thick *p*-type NiO with a radius of 110 μ m was deposited by sputtering and lift-off. The hole concentration in the p-type NiO layer is 3.7×10^{19} cm⁻³ via Hall measurements. Eventually, a circular Ni/Au (50 nm/100 nm) anode with a radius of 100 μ m was formed after metal deposition and annealing at 300 °C for 120 s.

Figure 1(b) illustrates the forward and reverse current– voltage (*I–V*) characteristics of the NiO/ β -Ga₂O₃ *p–n* heterojunction at 300 K. A leakage current of 7.09 × 10⁻⁹ A cm⁻² at a bias of –50 V is observed, deducing an excellent voltageblocking capacity. The forward *I–V* characteristics in linear scale are plotted in the inset of figure 1(b), and the threshold voltage (*V*_{th}) is determined to be 1.84 V at 300 K, using 1 A cm⁻² standard.

Figure 1(c) displays the capacitance–voltage (C-V) characteristics of the NiO/ β -Ga₂O₃ p–n heterojunction at 1 MHz with a step of 50 K. To investigate the relationship between capacitance and temperature, the capacitance–temperature (C-T) characteristics at -0.75 V are exhibited in figure 1(d). The capacitance reduces from 23.50 nF cm⁻² to 13.80 nF cm⁻² as the temperature decreases from 350 K to 25 K due to the reduced hole concentration in p-type NiO

Figure 1. (a) A schematic cross section of the NiO/ β -Ga₂O₃ p-n heterojunction. (b) Forward and reverse I-V characteristics on a logarithmic scale at 300 K. Inset: forward I-V characteristics in linear scale at 300 K. (c) C-V characteristics from 50 K to 350 K. (d) C-T characteristics. Inset: the carrier concentration extracted from the C-V characteristics at 300 K.

at low temperatures [18]. Moreover, the capacitance was extracted to be 13.80 nF cm⁻² at 25 K, indicating that the hole concentration was nearly halved at cryogenic temperatures. Meanwhile, the depletion region in the junction mainly locates at the n^- -type β -Ga₂O₃ layer, as the hole concentration in the *p*-type NiO layer is still much larger than the carrier concentration in the n^- -type β -Ga₂O₃ layer, even though about half of the holes are frozen out at low temperatures. As shown in the inset of figure 1(d), the carrier concentration (N_S) was extracted to be about 4×10^{16} cm⁻³ at 300 K.

3. Trap characteristics

As depicted in figure 2(a), the trap properties have been quantified by temperature-scanning DLTS from 20 K to 350 K. The equipment used in this experiment is the FT 1230 highenergy resolution analysis DLTS (FT 1230 HERA-DLTS) system (PhysTech). The DLTS signal is recorded with a reverse bias $U_R = -15$ V, a filling pulse $U_P = -0.1$ V, a filling pulse width $t_P = 0.01$ s and a measurement period $T_W = 0.01$ s. A minority carrier trap (H1) was determined by a distinct negative valley in the DLTS spectrum. When the pulse bias changes from -15 V to -0.1 V, the junction barrier between NiO and β -Ga₂O₃ becomes smaller, and it is easier for holes to get injected from *p*-type NiO into n^- -type β -Ga₂O₃ directly or via the assistance of an interface state. As shown in figure 2(b), H1 features an $E_{\rm emi}$ of 0.10 eV and a hole capture cross section (σ_p) of 2.48 × 10⁻¹⁵ cm² by Arrhenius analysis [24]. Furthermore, the depletion region width with U_R of -15 V is evaluated to be 1.24 μ m around 60 K, which is much smaller than the thickness of n^- -type β -Ga₂O₃ (10 μ m), deducing that H1 is located in the upper region of n^- -type β -Ga₂O₃.

As shown in table 1, hole traps or defects in β -Ga₂O₃ have been commonly observed in the literature [18, 19]. Hole traps with comparable E_{emi} and smaller σ_p were reported in both the Si-doped β -Ga₂O₃ drift layer ($E_{emi} = 0.14 \text{ eV}, \sigma_p = 6 7 \times 10^{-17} \text{ cm}^2$) and the unintentionally doped β -Ga₂O₃ bulk substrate ($E_{emi} = 0.06 \text{ eV}, \sigma_p = 1-2 \times 10^{-21} \text{ cm}^2$) [18, 19]. Compared to other hole traps, the larger σ_p of H1 indicates the enhanced ability of H1 to capture holes in β -Ga₂O₃. The strong capability of H1 to capture holes represents the barrier which needs to be overcome before achieving *p*-type conduction in β -Ga₂O₃ materials.

The variations of capacitance transient amplitudes ($\triangle C$) with different t_P were recorded from 40 K to 60 K, as shown in figure 3(a). As t_P increases, the absolute value of $\triangle C$ exhibits a steep increase initially due to the incremental amount of filled trap. However, the value of $\triangle C$ becomes saturated while t_P is further enhanced, which is attributed to the complete

Figure 2. (a) The temperature-scanning DLTS signal at 1 MHz. (b) The Arrhenius plot of H1 to extract E_{emi} , where v_{thp} is the thermal velocity of holes and N_V is the effective density of states in the conduction band.

Table 1. A comparison of trap properties between H1 and other hole traps in the literature. (NA means not applicable in the table.)

Figure 3. (a) The normalized $\triangle C$ as a function of t_P . (b) Fitting curves for H1. (c) The capture time constant from 40 K to 65 K. (d) An Arrhenius plot of H1 to extract E_{cap} .

occupancy of traps. When the temperature rises, a shorter t_P is sufficient to achieve the saturation of $\triangle C$, indicating that the capture process of H1 is accelerated at a higher temperature.

Figure 3(b) illustrates the relationship between $\triangle C$ and t_P at different temperatures, showing good linearity, as described by the following equation [25]:

Figure 4. (a) The temperature-scanning DLTS signal with different U_R . (b) The temperature-dependent τ_e .

$$\ln\left(1 - \frac{\Delta C}{\Delta C_{\max}}\right) = \frac{t_P}{\tau_c} \tag{1}$$

where $\triangle C_{\text{max}}$ is the saturated capacitance transient amplitude. H1 is regarded as a point defect rather than an extended defect as a result of the excellent fitting linearity [25]. In figure 3(c), from 40 K to 65 K, τ_c obtained via equation (1) reduces from 10.45 ms to 3.88 ms, revealing a temperature-enhanced capture process. It is also proposed that τ_c has the following relationship with temperature, from which E_{cap} can be determined [26]:

$$\ln\left(\frac{1}{\tau_c v_{\rm thp} \sigma_p}\right) = -\frac{E_{\rm cap}}{kT} + \ln\left(p_P\right) \tag{2}$$

where k is the Boltzmann constant, and p_P is the hole concentration at the depletion region width with $U_P(w_P)$. As shown in figures 3(d) and (a), a negligible E_{cap} (7 meV) is extracted by linear fitting of equation (2). Due to the absence of a capture barrier for H1, holes in β -Ga₂O₃ are readily captured by H1, posing a significant obstacle in the manufacture of *p*-type β -Ga₂O₃ materials.

The binding energy (E_{binding}), which signifies the distance between the trap and valence band, is extracted to be 0.10 eV from the following equation [27]:

$$E_{\rm emi} = E_{\rm cap} + E_{\rm binding} \quad . \tag{3}$$

Due to the absence of E_{cap} , E_{binding} , which represents the precise location of H1 in the bandgap, is typically equal to E_{emi} .

Figure 4(a) depicts the temperature-scanning DLTS signal with different U_R . The blue dashed line represents the valley of the temperature-scanning DLTS signal. The valley position stabilizes at around 60 K as U_R increases, indicating that H1 is a bulk trap in n^- -type β -Ga₂O₃ instead of an interface trap [28]. Meanwhile, the fixed valley position also infers that the emission process is not enhanced by the rising electric field, corresponding to U_R from -5 V to -20 V [28]. Figure 4(b) shows the τ_e extracted by isothermal DLTS, as enhancing the reverse bias from -5 V to -20 V, in the temperature ranging from 40 K to 65 K [3]. The bar in the graph represents the deviation value of τ_{e_i} as varying U_R . When U_R increases, τ_e is slightly shifted, leading to a typical electric-field-independent emission process. Nonetheless, the decrease in τ_e from 4.28 ms to 2.48 ms when the temperature increases from 40 K to 65 K reveals a temperature-enhanced emission process.

Figure 5(a) shows the N_T derived from $\triangle C$ as a function of the depletion region width under the $U_R(w_R)$ by isothermal DLTS with varying U_R :

$$N_T = 2\frac{\Delta C}{C_R} N_S \tag{4}$$

where C_R is the capacitance at U_R . During isothermal DLTS, t_P is set to be 100 ms to ensure that all the traps are occupied. The N_T initially increases and subsequently decreases as w_R is extended. The increase in the N_T is related to the quick carrier recombination effect at the edge of the depletion region [29]. The electron concentration near the edge of the depletion region gradually drops to zero in the region with a critical width (λ_R), as shown in figure 5(b). In this region, holes are emitted rapidly from traps to recombine with the electrons, and fail to be detected by DLTS due to the short emission time. The neglection of quick carrier recombination contributes to an underestimated N_T . The N_{Ta} , which means the corrected trap concentration, can be extracted from the following equations [29]:

$$N_T = N_{\rm Ta} \left(1 - \frac{\lambda_R}{w_R} \right)^2 \tag{5}$$

$$\lambda_{R} = \sqrt{\frac{2\varepsilon_{r}\varepsilon_{0}kT}{N_{S}q^{2}}\ln\left(\frac{N_{S}\nu_{\rm thn}\sigma_{n}\tau_{e}}{\ln\left(2\right)}\right)} \tag{6}$$

where ε_r and ε_0 are relative and vacuum permittivity, separately, q is the elementary charge, and v_{thn} is the thermal velocity of electrons. From the fitting red dashed line, an N_{Ta} of 2.73 × 10¹⁵ cm⁻³, a λ_R of 533 nm and a σ_n of 1.42 × 10⁻¹⁸ cm² are extracted. The N_{Ta} is one order of magnitude greater than the N_T , reflecting a higher consumption of

Figure 5. (a) N_T as a function of w_R . The red dashed line represents the fitting of equation (5). (b) The carrier distribution near the NiO/ β -Ga₂O₃ interface.

holes than the result that does not take quick carrier recombination into account. Meanwhile, σ_n is much smaller than σ_p , suggesting that H1 is more likely to capture holes rather than electrons. The results highlight the difficulties associated with achieving efficient hole doping in β -Ga₂O₃. As w_R is further extended, N_T shows a decreasing trend, as shown in figure 5(a). The decreased N_T as extracted was due to insufficient hole injection. When w_R is adequately long, it is challenging for the holes to tunnel from *p*-type NiO and diffuse to the region far away from the NiO/ β -Ga₂O₃ junction interface cannot be detected due to the absence of hole trapping activity.

4. Conclusion

In summary, the electrical and trap characteristics of a NiO/ β - Ga_2O_3 *p*-*n* heterojunction were thoroughly investigated. A minority carrier trap H1 was identified via DLTS with an E_{emi} of 0.10 eV and σ_n of 2.48 \times 10⁻¹⁵ cm², and is regarded as a point defect. When the temperature elevates from 40 K to 65 K, τ_c drops from 10.45 ms to 3.88 ms and τ_e decreases from 4.28 ms to 2.48 ms, indicating a temperature-enhanced capture and emission process. In contrast, τ_e remains unchanged with varying U_R , inferring the insignificant influence of the electric field on the emission process. Taking the quick carrier recombination effect into account, N_{Ta} and σ_n were measured to be 2.73×10^{15} cm⁻³ and 1.42×10^{-18} cm², respectively. The results imply that the strong capability of capturing holes, a large corrected trap concentration and the absence of a capture barrier, in combination, represent obstacles that need to be overcome before achieving good *p*-type conduction in β -Ga₂O₃ materials. The trap properties revealed in this study also provide a foundation for understanding trap-related dynamic degradation in β -Ga₂O₃-based power devices.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

Acknowledgments

This work was supported by ShanghaiTech University Startup Fund 2017F0203-000-14, the National Natural Science Foundation of China (Grant No. 52131303), the Natural Science Foundation of Shanghai (Grant No. 22ZR1442300), and in part by CAS Strategic Science and Technology Program under Grant No. XDA18000000.

ORCID iDs

References

- [1] Chabak K D et al 2019 Semicond. Sci. Technol. 35 013002
- [2] Pearton S, Ren F, Tadjer M and Kim J 2018 J. Appl. Phys. 124 220901
- [3] Qu H, Chen J, Zhang Y, Sui J, Gu Y, Deng Y, Su D, Zhang R, Lu X and Zou X 2023 Semicond. Sci. Technol. 38 015001
- [4] Wong M H, Takeyama A, Makino T, Ohshima T, Sasaki K, Kuramata A, Yamakoshi S and Higashiwaki M 2018 Appl. Phys. Lett. 112 023503
- [5] Chen J, Luo H, Qu H, Zhu M, Guo H, Chen B, Lv Y, Lu X and Zou X 2021 Semicond. Sci. Technol. 36 055015

- [6] Luo H, Zhou X, Chen Z, Pei Y, Lu X and Wang G 2021 IEEE Trans. Electron Devices 68 3991–6
- [7] Yu J, Dong L, Peng B, Yuan L, Huang Y, Zhang L, Zhang Y and Jia R 2020 J. Alloys Compd. 821 153532
- [8] Schlupp P, Splith D, von Wenckstern H and Grundmann M 2019 Phys. Status Solidi a 216 1800729
- [9] Jia M, Wang F, Tang L, Xiang J, Teng K S and Lau S P 2020 Nanoscale Res. Lett. 15 47
- [10] Higashiwaki M, Sasaki K, Murakami H, Kumagai Y, Koukitu A, Kuramata A, Masui T and Yamakoshi S 2016 Semicond. Sci. Technol. 31 034001
- [11] Shin G, Kim H Y and Kim J 2018 Korean J. Chem. Eng. 35 574–8
- [12] Feng Q et al 2020 ECS J. Solid State Sci. Technol.
 9 035001
- [13] Guo D et al 2018 ACS Nano 12 12827-35
- [14] Gong H, Chen X, Xu Y, Chen Y, Ren F, Liu B, Gu S, Zhang R and Ye J 2020 IEEE Trans. Electron Devices 67 3341–7
- [15] Polyakov A Y et al 2021 J. Appl. Phys. 129 185701
- [16] Wu C et al 2021 Mater. Today Phys. 17 100335
- [17] Gong H et al 2021 IEEE J. Electron Devices Soc.
 9 1166–71
- [18] Wang Z et al 2022 IEEE Trans. Electron Devices 69 981–7

- Wang Z, Gong H H, Yu X X, Ji X, Ren F F, Yang Y, Gu S, Zheng Y, Zhang R and Ye J 2023 Sci. China Mater.
 66 1157–64
- [20] Wang Z P, Gong H H, Yu X X, Hu T C, Ji X L, Ren F F, Gu S L, Zheng Y D, Zhang R and Ye J D 2023 Appl. Phys. Lett. 122 152102
- [21] Li K H, Alfaraj N, Kang C H, Braic L, Hedhili M N, Guo Z, Ng T K and Ooi B S 2019 ACS Appl. Mater. Interfaces 11 35095–104
- [22] Polyakov A Y, Lee I H, Smirnov N B, Shchemerov I V, Vasilev A A, Chernykh A V and Pearton S J 2020 J. Phys. D: Appl. Phys. 53 304001
- [23] Kanegae K, Narita T, Tomita K, Kachi T, Horita M, Kimoto T and Suda J 2020 Jpn. J. Appl. Phys. 59 SGGD05
- [24] Lang D V 1974 J. Appl. Phys. 45 3023-32
- [25] Heo S et al 2016 Sci. Rep. 6 30554
- [26] Criado J, Gomez A, Calleja E and Muñoz E 1988 Appl. Phys. Lett. 52 660–1
- [27] Hacke P, Detchprohm T, Hiramatsu K, Sawaki N, Tadatomo K and Miyake K 1994 J. Appl. Phys. 76 304–9
- [28] Coelho A, Adam M and Boudinov H 2011 J. Phys. D: Appl. Phys. 44 305303
- [29] Kanegae K, Horita M, Kimoto T and Suda J 2018 Appl. Phys. Express 11 071002